Management of Bentgrass Cultivars for Improved Resistance to Microdochium Patch (*Microdochium nivale*) under Climate Change Conditions

S. Stricker, Dr. T. Hsiang University of Guelph, Guelph

Dr. A. Bertrand Agriculture & Agri-Food Canada, Québec City

Climate Change

2

Climate Change

UNIVERSITY

Carbon Dioxide

Projections of Carbon Dioxide Concentrations

Temperature Fluctuations

Spring and fall temperatures are less stable

Cold hardening is the physiological and biochemical process by which an organism prepares for cold weather

Effects of Climate Change

- Increasing CO₂ concentrations
 - Increases in plant growth
 - -Increased plant vigor to fight pathogens

Effects of Climate Change

- Increasing temperatures
 - Less stable snow cover conditions
 Increased survival of pathogens

Effects of Climate Change

- Temperature Fluctuations
 - Day length and temperature triggers don't match
 - Decrease in hardening off
 - Increase in Disease

UNIVERSITY GUELPH

Microdochium nivale

- Hosts include barley, oats wheat, and cool-season turfgrasses
- Turfgrass diseases:
 - Pink Snow Mold
 - Fusarium Patch AKA Microdochium Patch

Symptoms on turfgrass

Pink Snow Mold

Microdochium Patch

Creeping Bentgrass

- Agrostis stolonifera
- Grown on golf courses (greens & tees)
- Susceptible to Microdochium Patch

Chemical Control Methods

Other Control Methods

Inherent resistance varies by cultivar

UNIVERSITY GUELPH

Resistance Activators

- Non-toxic to plants and fungi
- Activates natural resistance responses
- The plant defences are primed before the pathogen is present
- Speed of recognition and response is key

Ready to fight!

Civitas/Harmonizer[™]

- Developed by PetroCanada
 - Food-grade isoparaffins
 - Pigment dispersal product containing chelated copper

Induction

The plant's defenders are given an "extra shot of caffeine"

Priming

After the signal, the weapons are locked and loaded

Resistance Genes Expressed

- How will disease resistance of bentgrass cultivars be affected by climate change?
- How will the efficacy of Civitas/Harmonizer™ be affected?

Screen commonly used cultivars for inherent disease resistance

22

Materials

18 Grass Cultivars

- Creeping bentgrass (Agrostis stolonifera)
- Colonial bentgrass (Agrostis capillaris)
- Velvet bentgrass (Agrostis canina)
- Annual bluegrass (Poa annua)

Cultivars commonly used in Norway

23

Disease Ratings

Disease Severity at 10°C and 20°C 400 160 Area under disease progress curve for 10°C 10°C (rated over 2 wk) 20°C (rated over 1 wk) 140~ 350 ğ ē BCDEF BCD BCD BC ഫ 300 BG 120 BCDEF SCDEF CDEFG BCDEFG CDEFG DEFG 250 DEFG 100 EFG prod 200 80 ease 150 60 100 40 Area under 50 20 n .0^{CUS} Green King Nordi Alpha PenA Leiri dr penc Decla 001 Poahn シ VIII2 Indep Cato Nack 25 Values with a letter in common are not significantly different within treatment.

Values with a letter in common are not significantly different within treatment.

Investigate the impact of cold hardening on disease development and resistance activation

Seeding

0.04 g seed/cone

Growth

50 µmol/m²/s light

Activator

28

t 5% Civitas + 0.3% Harmonizer

Inoculation

1 wk after Activator

Percent Yellowing

Cold Hardening

м	Т	w	т	F	S	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
14	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	1	2	3	4	5
(с/н)	7	8	9	10	11	12
i	14	15	16	17	1 R	19
R	21	R	23	R	25	26
R	28	29	30	31	1	2

20°C/ 16 h light,
8 h dark
10°C/ 12 h light,
12 h dark

C/H- Civitas/harmonizer I- inoculation R-rating

Values with a letter in common are not significantly different within treatment.

30

Effect of Temperature Regimen

Civitas/Harmonizer

Area under disease progress curve of turfgrass cultivars inoculated with *M. nivale* by temperature treatment

37

	Civitas/Harmonizer		Water	
Cultivar	10°C for 2 wk	20°C constant	10°C for 2 wk	20°C constant
Alpha	88.3 a	250.0 b	589.2 a	501.7 a
Tyee	112.5 a	261.7 b	565.0 a	533.3 a
Focus	98.3 a	171.7 c	549.2 ab	484.2 a
T1	89.2 a	250.0 b	509.2 ab	360.0 a
Independence	100.8 a	426.7 a	407.5 abc	431.7 a
Poa annua	20.0 b	95.0 a	345.0 bc	382.5 a
Penncross	89.2 a	175.8 c	286.7 c	430.0 a

Within a column, values with a letter in common are not significantly different. Means are based on three replicates.

Percent Disease Suppression

Investigate the impact of CO_2 on disease development combined with the efficacy of a resistance activator

CO₂ Growth Chambers

 Soils and Crops Research and Development Centre Quebéc City, Quebéc

Growth Procedure

Seeding

12 g/m² seeding rate Poa annua propagated

Growth

20C day / 15C night 16 h photoperiod 500 µmol/m²/s light 8 wk 400 and 800 ppm CO₂ Chill 15C day / 10C night 3 wk

Growth Procedure

Activator

5% Civitas 0.3% Harmonizer (label rate)

Inoculation

1 wk after Activator 0.25 g dried inoculum/pot % Yellowing assessed 7, 9, 15, 21 days post inoculation (DPI)

37

Percent Yellowing Ratings

Water

Civitas/Harmonizer

Effect of Carbon Dioxide

Variation by Cultivar

	Disease Severity (AUDPC) of turfgrass cultivars inoculated with <i>M. nivale</i> by CO ₂ treatment					
	400 pp	m CO ₂	800 ppm CO ₂			
Cultivar	Civitas	Water	Civitas	Water		
Focus	525 a	620 ab	232 a	586 a		
Tyee	435 ab	619 ab	216 a	518 ab		
Independence *	285 b	594 ab	256 a	483 abc		
Poa annua	388 ab	720 a	264 a	378 abc		
Penncross	325 ab	553 ab	240 a	354 abc		
T1	378 ab	682 a	227 a	337 bc		
Alpha	376 ab	552 ab	258 a	273 bc		
Leirin *	289 b	423 b	166 a	270 c		
LSD (p<0.05)	235.6	228.9	126.5	246.1		

Within a column, values with a letter in common are not significantly different.

Means are based on four replicates.

*Cultivars selected by Scandinavian colleagues.

UNIVERSITY

Overall Summary

- All trials show variation between cultivars
- Temperature experiment
 - Cold hardening increases disease resistance
 - Civitas/Harmonizer is more effective under cold hardening conditions
- CO₂ experiment
 - Increasing CO₂ suppresses symptoms
 - Even greater effect of Civitas/Harmonizer at increased CO_2

Future Work

- CO₂ experiment
 - RNA sequencing
 - Free amino acid composition
 - Sugars analysis
- Cold Hardening
 - More temperature fluctuation experiments
- M. nivale

- Temperature dependent growth curve

Acknowledgments

Funding

- Petro Canada
- Natural Sciences and Engineering Research Council of Canada
- Canadian Turfgrass Research Foundation

People

- Hsiang Lab
- Bertrand Lab
 - Josée Bourassa
 - Sandra Delaney
- GTI Staff

Agriculture and Agri-Food Canada Agrouture at Agroatmentaire Canad

Any Questions?

Thank you for your time

