

Effect of Temperature on Microdochium Disease Severity

S. Stricker¹, Dr. T. Hsiang¹, Dr. A. Bertrand² ¹ University of Guelph, Guelph ² Agriculture & Agri-Food Canada, Québec City

WARNING:

Some of the following images are graphic in nature and might be disturbing to some viewers.

- •Fungal plant pathogen
- Hosts include barley, oats, wheat, and cool-season turfgrasses

•Turfgrass diseases:

- Pink snow mold after snowmelt
- Fusarium patch/ Microdochium patch in spring and fall

Fusarium or Microdochium patch?

Fusarium spores

Spores from pink snow mold

Foot cell

Creeping Bentgrass (Agrostis stolonifera)

- •Used as turfgrasses for fairways, tees and putting greens
- •At low mowing heights, often invaded by Annual bluegrass (*Poa annua*)
- •Susceptible to Microdochium patch
 - Inherent resistance genes vary by cultivar

Microdochium nivale

•In lab studies, the optimal growth temperature for *M. nivale* is 22°C

- •The observed optimal temperature for infection is between 0 and 15°C
- (Brennan et al., 2003; Snider et al., 2000)

Climate Change

Projections of Surface Temperatures 2020-2029 2090-2099

How might climate change affect *Microdochium nivale*?

What will happen to *M. nivale* in usual Microdochium patch areas if exposed to hotter weather?

Effect of temperature on *M. nivale*

- •Seven isolates of *M. nivale* grown in Petri dishes, then exposed to 35°C for various length of time
 - •1, 6, 12, 24, 36, 48, and 72 hours
- •Returned to 20°C and monitored if they continued to grow

Effect of exposure to 35°C

Effect of exposure to 35°C

Survival of M. nivale colonies after exposure to 35°C

- What will happen to *M. nivale* in usual Microdochium patch areas if exposed to hotter weather?
 - Longer exposure to high temperatures may kill actively growing *M. nivale* hyphae

How does Microdochium Patch disease severity vary by cultivar?

Materials and Methods

- 18 Grass Cultivars
 - Creeping bentgrass (Agrostis stolonifera)
 - Colonial bentgrass (Agrostis capillaris)
 - Velvet bentgrass (Agrostis canina)
 - Annual bluegrass (Poa annua)
- •Inoculated with five isolates of M. nivale
- •Assessed for percent yellowing every 3 days

🖺 Disease Severity Ranking

- Average disease severity of 18 cultivars was ranked
- Average rank of 4 repeated experiments was calculated
- Low rank #= Low disease

Cultivar	Average Rai	nk from 1 to 18
Greenspeed	6	D
Focus	6	D
Tyee	6	D
Independence	6	D
Kingpin	7	CD
T1	7	CD
Villa	7	CD
Alpha	8	BCD
Cato	9	ABCD
Nordlys	10	ABCD
Leirin	10	ABCD
Declaration	10	ABCD
Mackenzie	11	ABCD
007	12	ABC
Poa annua	13	AB
Penncross	13	AB
PennA4	14	А
CY2	14	A
LSD (<i>p</i> <0.05)	5	

Values with a letter in common are not significantly different.

Cultivar	Average Rar	nk from 1 to 1	8
Greenspeed	6	D	
Focus	6	D	
Tyee	6	D	
Independence	6	D	
Kingpin	7	CD	
T1	7	CD	
Villa	7	CD	
Alpha	8	BCD	
Cato	9	ABCD	
Nordlys	10	ABCD	
Leirin	10	ABCD	
Declaration	10	ABCD	
Mackenzie	11	ABCD	
007	12	ABC	
Poa annua	13	AB	
Penncross	13	AB	
PennA4	14	А	
CY2	14	А	
LSD (p<0.05)	5		

- Creeping bentgrass
- Colonial bentgrass
- Velvet bentgrass
- Annual bluegrass

How might climate change impact Microdochium Patch disease?

Impacts of Climate Change

- Plants in northern and temperate climates undergo cold hardening
 - Stockpiling nutrients
 - Producing defence mechanisms against pathogens
- •Triggered by dropping temperatures and decreasing day length
 - Climate change may lead to a disconnect between temperature and day length

Effects of temperature

What will happen to Microdochium patch if conditions do not allow for cold hardening?

Conetainer Procedure

Seeding

Growth

0.04 g seed/cone 4 creeping bentgrass cultivars 20°C, 12 h photoperiod 2 wk Temperature Treatments 4°C, 10°C, 15°C, 20°C 12 h photoperiod 2 wk

Conetainer Procedure

Inoculation 0.04 g dried inoculum Incubated at 15°C

Disease Rating

% Yellowing assessed every 3rd day for 2 wk

	Percent yellowing of turfgrass cultivars 9 days post inoculation with <i>M. nivale</i> after various pre-inoculation temperature treatments					
Treatment	Alpha	Focus	Pencross	Туее	Row LSD	Treatment Mean
4°C	25 ab	4 b	28 a	14a	20	18b
10°C	17b	22 b	31a	26a	23	24 b
15°C	13b	22 b	27 a	17a	18	20b
20°C	45a	50 a	37a	22 a	27	39a

Values with a lowercase letter in common are not significantly different within column

- Pre-inoculation treatments of temperatures <20°C decreased disease severity caused by *M. Nivale*
- •What will happen to Microdochium patch if conditions do not allow for cold hardening?

• Disease symptoms may be more severe

Resistance Activators

- A synthetic chemical that is non-toxic to plants and fungi that, when applied to a plant, activates natural resistance responses
- •The plant defences become primed before the pathogen is present
 - •Ready for battle!

- Resistance Activator
- Not a fungicide, no fungicide resistance

Effective controls on creeping bentgrass of:

- Brown patch (Rhizoctonia solani)
- Dollar spot (Sclerotinia homoeocarpa)
- Developed by PetroCanada
- Food-grade isoparaffins
- Pigment dispersal product containing copper II

- Induced systemic resistance (ISR)
 - Induced- caused by the application
 - Systemic- through the plant system
 - Resistance- Defence response occurs faster

when pathogen is present

Materials and Methods

Growth 20°C 12 h photoperiod 3 wk

Activator

5% Civitas 0.3% Harmonizer (label rate) or Water

Inoculation Disease Rating 10°C or 20°C 12 h photoperiod 2 wk

Results- Experiment 1

	Percent yellowing of turfgrass cultivars 14 days post							
	inoculation with M. nivale, treated with Civitas or water,							
		under two temperature treatments						
Treatment	Cato	Kingpin	L93	Macke nzie	007	PennA4	V8	Mean
10°C Civitas	0a	0a	2a	0a	0a	0a	0a	0
10°C Water	0a	2a	2a	Зa	2a	12a	2 a	3
20°C Civitas	83a	80a	77 ab	55b	90a	87a	87a	80
20°C Water	98a	98 a b	100 a	98ab	100a	98a	90 b	97
LSD (<i>p</i> <0.05)	6	6	15	24	9	16	10	5

- Values with a letter in common are not significantly different.
- Means are based on 3 replicates.

Percent yellowing of turfgrass cultivars 12 days post inoculation with M. nivale, treated with Civitas or water, under two temperature treatments Poa Treatment Alpha Focus Indep Penn T1 Tyee Mean annua 3 10°C Civitas 1a 0a 5a 2a 7a 5a 2a 10°C Water 27ab 45 ab 60a 20ab 13ab 28ab 7b 29 16 20°C Civitas 13a 22a 20a 12a 15a 12a 17a 20°C Water 47ab 37 ab 63a 35 ab 22b 55ab 47ab LSD 17 45 85 26 16 38 18 12 (p < 0.05)

Values with a letter in common are not different within row

- Means are based on 3 replicates.
- Indep= Independence, Penn= Penncross

Disease Suppression 12 days post inoculation

	Average percent disease		
	suppression by Civitas + Harmonizer		
10°C	83%		
20°C	60%		
LSD (p<0.05)	18		

- Means are based on 7 cultivars
- Effect of cultivar was not significant (p>0.05)

Disease Suppression 12 days post inoculation

Percent disease suppression by Civitas + Harmonizer

	Experiment 1	Experiment 2
10°C	81	83
20°C	18	60
LSD (p<0.05)	31	18

- Means are based on 7 cultivars
- Effect of cultivar was not significant (p>0.05)

- •Most cultivars expressed less symptoms at 10°C than 20°C
- Civitas +Harmonizer → Symptoms
- •C+H suppressed more disease symptoms at 10°C
- Percent yellowing varied by cultivar

- Continued Field Testing
- •Analysis of data on increased CO₂ effect on *M. nivale* disease and turfgrass biochemistry
- •Analysis of RNA expression in creeping bentgrass inoculated with *M. nivale*

Acknowledgments

<u>Funding</u>

- Petro Canada
- Canadian Turfgrass Research Foundation
- Natural Sciences and Engineering Research Council of Canada

People

- Hsiang Lab
- Bertrand Lab
- GTI Staff

Thank you for your time